

Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level in Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all **kinds of people, wherever they are in the world. We've been involved in education for** over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2018 Publications Code **WFM02_01_1806_MS** All the material in this publication is copyright © Pearson Education Ltd 2018

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be **done "in your head", detailed working would not be req**uired. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

June 2018 WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme	Notes	Marks
1	$\frac{1}{x-2} > \frac{2}{x}$		
	$\frac{1}{x-2} - \frac{2}{x} > 0 \Longrightarrow \frac{4-x}{x(x-2)} > 0$	Collect to one side and attempt common denominator of $x(x - 2)$	M1
	x = 0, 2, 4	B1 for 0 and 2, A1 for 4	<u>B1, A1</u>
	x < 0, 2 For their critical values α, β and γ in asce condoning the use of a mixture For one of $x < 0$ or $2 < x < 4$ condoning inequ	2 < x < 4 ending order, attempts $x < \alpha$ and $\beta < x < \gamma$ e of open or closed inequalities or ng the use of a mixture of open or closed alities	M1
	$x < 0, \ 2 < x < 4$ $(-\infty, 0) \text{ or } [-\infty, 0), \ (2, 4)$ Correct inequalities. Ignore what they have between their inequalities e.g. allow "or", "and", "," etc. but not \cap		
			(5)
	A 1/ /• 1	$(2)^{2}$	1 otal 5
		(x-2)	
	$x^2(x-2) > 2x(x-2)$		
	$x^{2}(x-2)-2x(x-2)^{2} > 0$		
	x(x-2)(4-x) > 0	$\times x^{2}(x-2)^{2}$ and attempt to factorise by taking out a factor of $x(x-2)$	M1
	x = 0, 2, 4	B1 for 0 and 2, A1 for 4	<u>B1</u> , <u>A1</u>
	Notes: $-x^{3} + 6x^{2} - 8x > 0 \text{ with no other working is M0}$ $-x^{3} + 6x^{2} - 8x > 0 \Longrightarrow x = 0, 2 \text{ is M1B1}$ $-x^{3} + 6x^{2} - 8x > 0 \Longrightarrow x = 0, 2 \text{ 4 is M1B1A1}$		
	$x < 0, 2 < x < 4$ For their critical values α, β and γ in ascending order, attempts $x < \alpha$ and $\beta < x < \gamma$ condoning the use of a mixture of open or closed inequalities or For one of $x < 0$ or $2 < x < 4$ condoning the use of a mixture of open or closed inequalities		
	x < 0, 2 < x < 4 $(-\infty, 0) \text{ or } [-\infty, 0), (2, 4)$	Correct inequalities. Ignore what they have between their inequalities e.g. allow "or", "and", "," etc. but not ∩	A1

Alternative 2 : C	onsiders regions	
Cas		
$x < 0 \Longrightarrow x - 2 < 0, x$	$<0 \Rightarrow x(x-2) > 0$	
$\Rightarrow x > 2(x - x)$	$(-2) \Rightarrow x < 0$	
Cas	ae 2	
$0 < x < 2 \Longrightarrow x - 2 < 0,$	$x > 0 \Longrightarrow x(x-2) < 0$	
$\Rightarrow x < 2(x-2) \Rightarrow x$	$>4 \Rightarrow$ Contradiction	
Cas	se 3	
$x > 2 \Longrightarrow x - 2 > 0, x > 0 \Longrightarrow x(x - 2) > 0$		
$\Rightarrow x > 2(x-2) \Rightarrow x < 4 \Rightarrow 2 < x < 4$ Contradiction		
M1: Considers 3 regions as above		
B1: $x = 0$ and 2 seen as critical values		
A1: $x = 4$ seen as a critical value		
x < 0, 2	x < x < 4	
For their critical values α , β and γ in asce	ending order, attempts $x < \alpha$ and $\beta < x < \gamma$	
condoning the use of a mixture of open or closed inequalities		M1
or		1111
For one of $x < 0$ or $2 < x < 4$ condoning the use of a mixture of open or closed		
inequalities		
x < 0, 2 < x < 4	Correct inequalities. Ignore what they	
$(-\infty 0) \text{ or } [-\infty 0] (2 4)$	have between their inequalities e.g. allow	A1
(3,0) or $[3,0)$, $(2,4)$	"or", "and", "," etc. but not \cap	

Question Number	Scheme	Notes	Marks
2(a)	$\left(x^2+1\right)\frac{\mathrm{d}y}{\mathrm{d}x}+x$	xy - x = 0	
	$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{xy}{\left(1+x^2\right)} = \frac{x}{\left(1+x^2\right)}$	Correct form.	B1
	$I = e^{\int \frac{x}{1+x^2} dx} = e^{\frac{1}{2}\ln(1+x^2)} = (1+x^2)^{\frac{1}{2}}$	M1: $I = e^{\int \frac{x}{1+x^2} dx} = e^{k \ln(1+x^2)}$ where k is a constant. (Condone missing brackets around the $x^2 + 1$) A1: Correct integrating factor of $(1+x^2)^{\frac{1}{2}}$	M1A1
	$y(1+x^2)^{\frac{1}{2}} = \int \frac{x}{(1+x^2)^{\frac{1}{2}}} dx$	Uses their integration factor to reach the form $yI = \int QI dx$	M1
	$=\left(1+x^2\right)^{\frac{1}{2}}\left(+c\right)$	Correct integration (+ c not needed)	A1
	$y = 1 + c(1 + x^2)^{-\frac{1}{2}}$ oe	Cao with the constant correctly placed. (The " y =" must appear at some point)	A1
			(6)
Way 2	Alternative by separa	tion of variables:	
	$\int \frac{\mathrm{d}y}{1-y} = \int \frac{x}{x^2+1} \mathrm{d}x$	Separates variables correctly	B1
	$\int \frac{x}{x^2 + 1} \mathrm{d}x = \frac{1}{2} \ln \left(x^2 + 1 \right)$	M1: $\int \frac{x}{x^2 + 1} dx = k \ln(x^2 + 1) \text{ where } k$ is a constant. (Condone missing brackets around the $x^2 + 1$)	M1A1
		A1. Context integration $\frac{1}{2}$ in $(x + 1)$	
	$\int \frac{\mathrm{d}y}{1-y} = -\ln\left(1-y\right)$	$\int \frac{dy}{1-y} = k \ln(1-y) \text{ or e.g.}$ $\int \frac{dy}{y-1} = k \ln(y-1)$	M1
	$-\ln(1-y) = \frac{1}{2}\ln(x^{2}+1)(+c)$	Fully correct integration	A1
	$y = 1 + c(1 + x^2)^{-\frac{1}{2}}$ oe	Cao and isw if necessary.	A1
	1	Substitutes $x = 2$ and $y = 2$ and	(0)
(0)	$2 = 1 + c\left(1 + 3^2\right)^{-\frac{1}{2}} \Longrightarrow c = \dots$	Substitutes $x = 3$ and $y = 2$ and attempts to find a value for <i>c</i> .	M1
	$(y=)1+\sqrt{10}(1+x^2)^{-\frac{1}{2}}$ oe	Cao. (" $y =$ " not needed for this mark) and apply isw if necessary.	A1
			(2) Total 8

Question Number	Scheme		Notes	Marks
3	$2\frac{d^2y}{dx^2} + \frac{d^2y}{dx^2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} - xy = 1$		
(a)	$2\frac{d^{3}y}{dx^{3}} + \frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} - y = 0$	B1: $2\frac{d^3y}{dx^3}$ terms if th M1: Atten sign errors	B1: $2\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2}$ or equivalent correct terms if they rearrange the given equation. M1: Attempt product rule on xy. Allow sign errors only so need to see $\pm x \frac{dy}{dx} \pm y$	
	$2\frac{d^4y}{dx^4} + \frac{d^3y}{dx^3} - x\frac{d^2y}{dx^2} - \frac{dy}{dx} - \frac{dy}{dx} = 0$	Differentia expression derivative to give ±.	ates again to obtain an n that contains the fourth including product rule on $x \frac{dy}{dx}$ $x \frac{d^2 y}{dx^2} \pm \frac{dy}{dx}$ rms to be "listed")	M1
	$\frac{d^4 y}{dx^4} = \frac{1}{2} \left(2 \frac{dy}{dx} + x \frac{d^2 y}{dx^2} - \frac{d^3 y}{dx^3} \right)$	If the "1" it "disappo mark shou	is not dealt with correctly e.g. if ears" at the wrong time, this ild be withheld.	A1
(b)	$y''(2) = 1, y'''(2) = 1, y'''(2) = \frac{3}{2}$	M1: Attempt $y''(2)$, $y'''(2)$ and $y''''(2)$ A1: Correct values		(4) M1A1
	$y = f(2) + (x-2)f'(2) + \frac{(x-2)^2 f'}{2!}$ Attempt correct Taylor expansion with to for the	$\frac{y'(2)}{x} + \frac{(x-1)}{x}$	$\frac{2)^{3} f'''(2)}{3!} + \frac{(x-2)^{4} f''''(2)}{4!}$ s. Allow the terms to be "listed"	M1
	$(y=)1+(x-2)+\frac{(x-2)^2}{2}+\frac{(x-2)^3}{6}+$	$\frac{\left(x-2\right)^4}{16}$	Correct simplified expression.	A1
				(4)
(c)	$x = 2.1 \Longrightarrow y = 1 + (0.1) + \frac{(0.1)^2}{2} + \frac{(0.1)^3}{6}$	$+\frac{(0.1)^4}{16}$	Substitutes $x = 2.1$ into an expansion involving $(x - 2)$	M1
	y = 1.105 only Note this is not awrt.		Cao (Note that this mark must follow the final A1 in (b) i.e. 1.105 must come from a correct expansion). Incorrect answer with no working scores M0. Correct answer following a correct expansion scores M1A1.	A1
				(2) Totel 10

Question Number	Scheme	Notes	Marks
4(a)	(Im) -i (Re)	M1: A circle anywhere. A1: A circle correctly positioned with centre –i or -1 marked in the correct place or (0, -1) or (-1, 0) or (0, -i) or (–i, 0) marked in the correct place and passing through (0, 0). The centre may be indicated away from the sketch but the sketch takes precedence. Ignore any shading.	M1A1
			(2)
(b) Way 1	$w = \frac{3iz}{z+z}$	$\frac{2}{i}$	
	$z = \frac{wi+2}{3i-w}$	M1: Attempt to make <i>z</i> the subject A1: Correct rearrangement oe	M1A1
	$z+i = \frac{wi+2}{3i-w} + i = \frac{wi+2-3-wi}{3i-w}$	Applies $z + i$ and finds common denominator	M1
	$\left \frac{wi+2-3-wi}{3i-w}\right = 1$	M1: Sets $ z + i = 1$ A1: Correct equation, simplified or unsimplified	M1A1
	Note if they work with $w = u + iv$ they shoul	d reach $\left \frac{2 - v + ui - ui - (3 - v)}{-u + (3 - v)i} \right = 1^{*}$	
	$\frac{\left \frac{-1}{3i-w}\right = 1 \Rightarrow w-3i = 1 \Rightarrow u+iv-3i = 1}{\Rightarrow u^2 + (3-v)^2 = 1 \text{ or equivalent e.g. } u^2 + (v-3)^2 = 1, u^2 + v^2 - 6v + 9 = 1}$ dM1: Introduces <i>u</i> and <i>v</i> or <i>x</i> and <i>y</i> (may occur earlier *) and uses Pythagoras correctly to find a Cartesian form This mark is dependent on all the previous method marks A1: Correct equation (allow <i>u</i> , <i>v</i> or <i>x</i> , <i>y</i> or <i>a</i> , <i>b</i>)		dM1A1
			(7)

In part (b) apply the scheme that is most beneficial to the candidate.

Way 2	z - wi + 2	M1: Attempt to make <i>z</i> the subject	N/1 A 1
	$2 = \frac{1}{3i - w}$	A1: Correct rearrangement oe	WIIAI
	(u+iv)i+2 $(2-v)+ui$	(2-v)+ui -u - (3-v)i	
	$2 - \frac{3i - (u + iv)}{3i - (u + iv)} - \frac{-u + (3 - v)i}{-u + (3 - v)i}$	$\overline{-u+(3-v)i}$ $\overline{-u-(3-v)i}$	M1
	Introduces $u + iv$ and multiplies numerate conjugate of the	tor and denominator by the complex denominator	
	$z+i = \frac{u + (5v-6-u^2 - v^2)i + (u^2 + u^2)}{u^2 + (3-v)^2}$ M1: Applies z + i and finds A1: Correct expression (simplified or under on the denomination)	$\frac{(u+v^2+9-6v)i}{u^2+(3-v)i} \left(= \frac{u+(3-v)i}{u^2+(3-v)^2} \right)$ a common denominator unsimplified) but with no i's in the nator	M1A1
	$ z+i = 1 \Rightarrow \left \frac{u+(3-v)i}{u^2+(3-v)^2} \right = 1$ dM1: Introduces <i>u</i> and <i>v</i> or <i>x</i> and <i>y</i> (may correctly to find a Cartesian form <u>This mark is dependent on all t</u> A1: Correct equation (allo	$\Rightarrow \frac{\sqrt{u^2 + (3 - v)^2}}{u^2 + (3 - v)^2} = 1 \text{ oe}$ occur earlier *) and uses Pythagoras in which may be unsimplified the previous method marks ow u, v or x, y or a, b)	d M1A1
			(7)

Way 3	$\overline{z-wi+2}$	M1: Attempt to make <i>z</i> the subject	M1 A 1
	$2-\frac{1}{3i-w}$	A1: Correct rearrangement oe	
	$z = \frac{(u+iv)i+2}{3i-(u+iv)} = \frac{(2-v)+ui}{-u+(3-v)i} = \frac{(2-v)+ui}{-u}$ Introduces $u + iv$ and multiplies numerator a conjugate of the deno	$\frac{(2-v)+ui}{+(3-v)i} \times \frac{-u-(3-v)i}{-u-(3-v)i}$ and denominator by the complex point of the	M1
	$z = \frac{u + (-u^2 - v^2 + 5v - 6)i}{u^2 + (3 - v)^2} \Longrightarrow x = \frac{u}{u^2 + (3 - w)^2}$ M1: Obtains x and y in ter A1: Correct equation	$\frac{1}{v^2} y = -\frac{u^2 + (v-3)^2 + v-3}{u^2 + (3-v)^2}$ ms of <i>u</i> and <i>v</i> tions	M1A1
	$x^{2} + (y+1)^{2} = 1 \Rightarrow \frac{u^{2} + (v-3)^{2}}{(u^{2} + (v-3)^{2})^{2}} = 1$ oe	d M1: Uses $ z+i =1$ to find an equation connecting u and v This mark is dependent on all the previous method marks A1: Correct equation which may be unsimplified.	d M1A1
			(7)

Way 4	$w = \frac{3iz - 2}{z + i}$		
	$z = \frac{wi+2}{2}$ M1: Attempt to make z the subject		M1A1
	3i-w	A1: Correct rearrangement oe	
	$z + i = \frac{wi + 2}{3i - w} + i = \frac{wi + 2 - 3 - wi}{3i - w}$ Applies $z + i$ and finds common denominator		M1
	$z + i = \frac{-1}{3i - u - iv} \times \frac{u - (v - 3)i}{u - (v - 3)i} = \frac{u - (v - 3)i}{u^2 + (v - 3)^2}$		
	$\Rightarrow \frac{u - (v - 3)i}{u^2 + (v - 3)^2} = 1$		M1A1
	M1: Multiplies numerator and denominator by the complex conjugate of the denominator and sets = 1 A1: Correct equation with no i's in the denominator		
	$\frac{\sqrt{u^2 + (3 - v)^2}}{u^2 + (3 - v)^2} = 1 \text{ oe}$		dM1 & 1
	 dM1: Introduces u and v or x and y (may occur earlier *) and uses Pythagoras correctly to find a Cartesian form which may be unsimplified <u>This mark is dependent on all the previous method marks</u> 		uwi i A i
			(7)

Way 5	$w = \frac{3iz - 2}{z + i}$			
	$u + iv = \frac{3i(x + iy) - 2}{x + iy + i} = \frac{(3ix - 3y - 2)(x - (y + 1)i)}{x^2 + (y + 1)^2} \qquad \qquad$		M1A1	
	$=\frac{x + (3(x^{2} + (y+1)^{2}) - y - 1)i}{x^{2} + (y+1)^{2}}$	Express rh	is in terms of $x^2 + (y+1)^2$	M1
	$x^{2} + (y+1)^{2} = 1 \implies y = x + (2-y)i$	$\Rightarrow w = x + (2 - v)i$ M1: Use of $ z + i = 1$		M1A1
		A1: $w = x + (2 - y)i$		
	$x^{2} + (y+1)^{2} = 1 \Longrightarrow u^{2} + (v-3)^{2} = 1$	dM1: Atte u and $vThis markprevious 1A1: u^2 + ($	Exampts equation connecting <u>k is dependent on all the</u> <u>method marks</u> $(v-3)^2 = 1$ oe	dM1A1
				(7)

Way 6	3iz - 2 - 3i(z+i) + 1 - 3i + 1	M1: Attempt rhs in terms of $z + i$	M1 A 1
	$W = \frac{1}{z+i} = \frac{1}{z+i} = \frac{1}{z+i} = \frac{1}{z+i}$	A1: Correct rearrangement oe	MIAI
	$w-3i = \frac{1}{z+i}$	Isolates $z + i$	M1
	$ w-3i = \left \frac{1}{1}\right = \frac{1}{1} = 1$	M1: Applies $ z+i = 1$	M1 A 1
	z+i = z+i = z+i	A1: Correct equation	MIAI
	$ w-3i = 1 \Longrightarrow u^2 + (v-3)^2 = 1$	dM1: Introduces <i>u</i> and <i>v</i> or <i>x</i> and <i>y</i> and uses Pythagoras correctly to find a Cartesian form This mark is dependent on all the previous method marks A1: $u^2 + (v-3)^2 = 1$ oe	dM1A1
			(7)

Way 7	-wi+2	M1: Attempt to make <i>z</i> the subject	M1 A 1
	$2-\frac{1}{3i-w}$	A1: Correct rearrangement oe	MIAI
	$ w = \left \frac{3iz - 2}{z + i}\right = \left 3iz - 2\right $	Uses $ w = \left \frac{3iz-2}{z+i}\right $ and $ z+i = 1$	M1
	$ w = 3i(\frac{wi+2}{2}) - 2 = \frac{-3w+6i-6i+2w}{2} $	M1: Attempts common denominator	M1A1
	(31-w) $(31-w)$ $(31-w)$	A1: Correct equation	
	$ w-3i = 1 \Longrightarrow u^2 + (v-3)^2 = 1$	dM1: Introduces <i>u</i> and <i>v</i> or <i>x</i> and <i>y</i> and uses Pythagoras correctly to find a Cartesian form <u>This mark is dependent on all the</u> <u>previous method marks</u> A1: $u^2 + (v-3)^2 = 1$ oe	dM1A1
			(7)

Question Number	Scheme	Notes	Marks
5(a)	4r+r(r+1)(r+1)(r+1)(r+1)(r+1)(r+1)(r+1)(r	$\frac{2}{(r+2)}$	
	$\frac{1}{r} + \frac{2}{(r+1)} - \frac{3}{(r+2)}$	M1: Correct partial fractions method e.g. substitution or compares coefficients to obtain one of A, B or C for $\frac{A}{r}$, $\frac{B}{(r+1)}$, $\frac{C}{(r+2)}$	M1A1 A1
		A1: 2 Correct fractions (or values) A1: All correct (fractions or values)	
	Correct answer with no work	ing scores full marks in (a)	
			(3)
(b)	Must have partial fractions of the form $\frac{A}{r}$	$\frac{1}{r}, \frac{B}{(r+1)}, \frac{C}{(r+2)}A, B, C \neq 0$ to score the	
	<u>first</u> M ma	rk in (b)	
	$\sum_{r=1}^{n} = \left(\frac{1}{1} + \frac{2}{2} - \frac{3}{3}\right) + \left(\frac{1}{2} + \frac{2}{3} - \frac{3}{4}\right) + \dots$ $\left(\begin{array}{cccc} 1 & 2 & 3 \end{array}\right) + \left(\begin{array}{cccc} 1 & 2 & 3 \end{array}\right)$		
	$\dots + \left(\frac{n-1}{n-1} + \frac{n}{n-1} - \frac{n+1}{n+1}\right) + \left(\frac{n}{n} + \frac{n+1}{n+1} - \frac{n+2}{n+2}\right)$		
	Attempts at least the first 2 groups of terms and the last 2 groups of terms which may		
	Allow other letters for n (most likely to be r) except for the final mark – see below		
	If terms are found beyond the limits of the summation e.g. $r = 0$, $r = n + 1$, these can be ignored for this mark as long as at least the terms for $r = 1, 2, n - 1$ and n are seen		
	be ignored for this mark as long as at least t	he terms for $r = 1, 2, n - 1$ and n are seen	
		A1: $\frac{1}{1} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ identified as the	
		only constant terms	
	$=\frac{1}{1}+\frac{2}{2}+\frac{1}{2}-\frac{3}{n+1}+\frac{2}{n+1}-\frac{3}{n+2}$	A1: $-\frac{3}{n+1} + \frac{2}{n+1} - \frac{3}{n+2}$	A1 A1
		1 1 2 identified	
		$rac{1}{n+1} = rac{n+2}{n+2} = rac{1}{n+2}$ Identified	
		as the only algebraic terms	
		Attempt common denominator from $B = C$	
	$-\frac{5(n^2+3n+2)-2(n+2)-6(n+1)}{2}$	terms of the form $A, \frac{1}{n+1}, \frac{1}{n+2}$ only.	M1
	-2(n+1)(n+2)	Must see $(n + 1)(n + 2)$ in the	1411
		polynomial of order 2 in the numerator.	
	$\frac{n(5n+7)}{2(n+1)(n+2)}$	Must be in terms of n for this mark.	A1
			(5)
			Total 8

	Alternative	e for (b)	
	$\frac{1}{r} + \frac{2}{(r+1)} - \frac{3}{(r+2)} = \left(\frac{1}{r} - \frac{3}{r}\right)$	$\frac{1}{r+2} + 2\left(\frac{1}{r+1} - \frac{1}{r+2}\right)$	
	$\sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+2} \right) = \frac{1}{1} - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{2}$	$-\frac{1}{n+1} + \frac{1}{n} - \frac{1}{n+2} = 1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2}$	M1
	$2\sum_{r=1}^{2}\left(\frac{r}{r+1}-\frac{1}{r+2}\right)=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}$	$m_{n} + \frac{1}{n} - \frac{1}{n+2} = \frac{1}{2} - \frac{1}{n+2}$	
I	Re-writes their partial fractions correctly as start and end for first sum and 1 group a	nd attempts at least 2 groups of terms at the start and end for the second sum	
		A1: $\frac{1}{1} + \frac{2}{2} + \frac{1}{2} \left(= \frac{5}{2} \right)$ identified as the	
		only constant terms	
	$\sum_{r=1}^{n} = \frac{5}{2} - \frac{1}{n+1} - \frac{3}{n+2}$	A1: A1: $-\frac{3}{n+1} + \frac{2}{n+1} - \frac{3}{n+2}$	A1A1
		oe e.g $-\frac{1}{n+1} - \frac{1}{n+2} - \frac{2}{n+2}$ identified	
		as the only algebraic terms	
	$=\frac{5(n^2+3n+2)-2(n+2)-6(n+1)}{2}$	terms of the form $A, \frac{B}{n+1}, \frac{C}{n+2}$ only.	M1
	2(n+1)(n+2)	Must see $(n + 1)(n + 2)$ in the denominator and an unsimplified polynomial of order 2 in the numerator.	
	$\frac{n(5n+7)}{2(n+1)(n+2)}$	Must be in terms of n for this mark.	A1

Question Number	Scheme	Notes	Marks
6	$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx}$	$+3y = x^2$	
(a)	$x = e^{t} \Rightarrow \frac{dx}{dy} = e^{t} \frac{dt}{dy} \Rightarrow \frac{dy}{dx} = e^{-t} \frac{dy}{dt}$	M1: Attempt first derivative using the chain rule to obtain $\frac{dx}{dy} = e^{t} \frac{dt}{dy}$ $A1: \frac{dy}{dx} = e^{-t} \frac{dy}{dt} 0e$	M1A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-1} \frac{\mathrm{d}y}{\mathrm{d}t} \Longrightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -x^{-2} \frac{\mathrm{d}y}{\mathrm{d}t} + x^{-1} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$	dM1: Attempt product rule and chain rule. Dependent on the first method mark and must be a fully correct method with sign errors only A1: Correct second derivative oe	dM1A1
	$x^{2}\left(\frac{1}{x^{2}}\frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}}-\frac{1}{x^{2}}\frac{\mathrm{d}y}{\mathrm{d}t}\right)-3x\left(\frac{1}{x}\frac{\mathrm{d}y}{\mathrm{d}t}\right)+3y=\left(\mathrm{e}^{t}\right)^{2}$	Substitutes their $\frac{d^2 y}{dx^2}$ and $\frac{dy}{dx}$ in terms of <i>t</i> into the differential equation	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{2t}$	cso	A1
			(6)
	Alternat	ve	
	$x = e^{t} \Longrightarrow \frac{dy}{dt} = e^{t} \frac{dy}{dx} = x \frac{dy}{dx}$	M1: Attempt first derivative using $\frac{dy}{dt} = \frac{dx}{dt} \times \frac{dy}{dx}$ A1: $\frac{dy}{dt} = x \frac{dy}{dx}$ oe	M1A1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{\mathrm{d}x}{\mathrm{d}t}\frac{\mathrm{d}y}{\mathrm{d}x} + x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\cdot\frac{\mathrm{d}x}{\mathrm{d}t} = x\frac{\mathrm{d}y}{\mathrm{d}x} + x^2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	dM1: Attempt product rule and chain rule. Dependent on the first method mark and must be a fully correct method with sign errors onlyA1: Correct second derivative oe	dM1A1
	$\frac{d^2 y}{dt^2} - x \frac{dy}{dx} - 3x \frac{dy}{dx} + 3y = e^{2t}$ $= \frac{d^2 y}{dt^2} - \frac{dy}{dt} - 3 \frac{dy}{dt} + 3y = e^{2t}$	Substitutes their $\frac{d^2 y}{dx^2}$ and $x \frac{dy}{dx}$ in terms of <i>t</i> into the differential equation	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{2t}$	Cso	A1
			(6)

(b)		Solves (according to the General	
	$m^2 - 4m + 3 = 0 \Longrightarrow m = 1, 3$	Guidance) the correct quadratic (so	M1
		should be $m = \pm 1, \pm 3$)	
	$(v-)Ae^{3t}+Be^{t}$	Correct CF in terms of <i>t</i> not <i>x</i> . (May	Δ.1
	(y -)AC + bC	be seen later in their GS)	AI
		Correct form for PI and differentiates	
	$v = ke^{2t}$ $v' = 2ke^{2t}$ $v'' = 4ke^{2t}$	twice to obtain multiples of e^{2t} each	M1
	y = hc, $y = 2hc$, $y = hc$	time but do not allow if they are	1,11
		clearly integrating.	
		Substitutes their y , y' , y'' that are of	
	$4ke^{2t}-8ke^{2t}+3ke^{2t}-e^{2t} \rightarrow k-$	the form αe^{2t} into the differential	M1
	$-\pi e o \pi e -\sigma \rightarrow \pi - \dots$	equation and sets = e^{2t} and proceeds to	
		find their k	
	$(y) = -e^{2t}$	Correct PI or $k = -1$	A1
		Correct ft GS in terms of t (their CF +	
	$y = Ae^{3t} + Be^t - e^{2t}$	their PI with non-zero PI).	B1ft
		Must be <i>y</i> =	
			(6)
(c)		Allow equivalent expressions in terms	
	$(y=)Ax^3+Bx-x^2$	of x e.g. $(y =) A e^{3\ln x} + B e^{\ln x} - e^{2\ln x}$.	B1
		Note that $y = \dots$ is not needed here.	
			(1)
			Total 13

Question Number	Scheme	Notes	Marks
7(a)	$\left(\cos\theta + i\sin\theta\right)^7 = \cos^7\theta + \binom{7}{1}\cos^6\theta i\sin\theta + \binom{7}{2}\cos^5\theta (i\sin\theta)^2 + \dots$		
	Attempts to expand $(\cos\theta + i\sin\theta)^7$ including	ng a recognisable attempt at binomial	M1
	coefficie	ents	
	(May only see 1	real terms)	
	$(\cos 7\theta =)c^7 + ^7 C_2 c^5 i^2 s^2 +$	$-^7 C_4 c^3 i^4 s^4 + ^7 C_6 c i^6 s^6$	M1
	Identifies real terms with $\cos 7\theta$		1411
	$=c^7 - 21c^5s^2 + 35c^3s^4 - 7cs^6$	Correct expression with coefficients evaluated and i's dealt with correctly	A1
	$=c^{7}-21c^{5}(1-c^{2})+35c^{3}(1-c^{2})^{2}-7c(1-c^{2})^{3}$	Replaces $\sin^2 \theta$ with $1 - \cos^2 \theta$ used anywhere in their expansion.	M1
	$=22c^{7}-21c^{5}+35c^{3}(1-2c^{2}+c^{2})$	$(c^4) - 7c(1 - 3c^2 + 3c^4 - c^6)$	
	Applies the expansions of $(1 - \cos^2 \theta)^2$ and $(1 - \cos^2 \theta)^3$ to their expression		M1
	$= 64\cos^7\theta - 112\cos^5\theta + 56\cos^3\theta - 7\cos\theta^*$	Correct expression obtained with no errors	A1
	Useful intermediate expression:		
	$= 22c^7 - 21c^5 + 35c^3 - 70c^5 + 35c^5 + 35c^5 - 70c^5 + 35c^5 + 35$	$5c^7 - 7c + 21c^2 - 21c^5 + 7c^7$	
			(6)

Alternative 1 for (a):	
$\left(z+\frac{1}{z}\right)^7 = z^7 + {\binom{7}{1}} z^6 \frac{1}{z} + {\binom{7}{2}} z^5 \frac{1}{z^2} + \dots$ Attempts to expand $\left(z+\frac{1}{z}\right)^7$ including binomial coefficients	M1
$\left(z+\frac{1}{z}\right)^7 = z^7 + \frac{1}{z^7} + 7\left(z^5 + \frac{1}{z^5}\right) + 21\left(z^3 + \frac{1}{z^3}\right) + 35\left(z+\frac{1}{z}\right)$ $\left(2\cos\theta\right)^7 = 2\cos7\theta + 7\left(2\cos5\theta\right) + 21\left(2\cos3\theta\right) + 35\left(2\cos\theta\right)$ $M1: \text{ Uses } z^n + \frac{1}{z^n} = 2\cos n\theta \text{ at least once (including } n = 1)$ $A1: \text{ Correct expression in terms of cos}$	M1A1
$\frac{128\cos^7\theta = 2\cos7\theta + 14(16\cos^5\theta - 20\cos^3\theta + 5\cos\theta) + 42(4\cos^3\theta - 3\cos\theta) + 70\cos\theta}{M1: \text{ Correct method to find } \cos5\theta \text{ in terms of } \cos\theta \text{ and applies this to their expression}}$	M1M1
$\cos 7\theta = 64\cos^7 \theta - 112\cos^5 \theta + 56\cos^3 \theta - 7\cos \theta *$	Al

	Alternative 2 for (a):		
	$\left(z+\frac{1}{z}\right)^{7} = z^{7} + {\binom{7}{1}}z^{6}\frac{1}{z} + {\binom{7}{2}}z^{5}\frac{1}{z^{2}} + \dots$	M1	
	Attempts to expand $\left(z+\frac{1}{z}\right)$ including binomial coefficients		
	$\left(z + \frac{1}{z}\right)^7 = z^7 + \frac{1}{z^7} + 7\left(z^5 + \frac{1}{z^5}\right) + 21\left(z^3 + \frac{1}{z^3}\right) + 35\left(z + \frac{1}{z}\right)$		
	$z^{7} + \frac{1}{z^{7}} = 2\cos 7\theta = \left(z + \frac{1}{z}\right)^{7} - 7\left(z^{5} + \frac{1}{z^{5}}\right) - 21\left(z^{3} + \frac{1}{z^{3}}\right) - 35\left(z + \frac{1}{z}\right)$ M1: Identifies that $z^{7} + \frac{1}{z^{7}} = 2\cos 7\theta$ A1: Correct expression for $2\cos 7\theta$ in terms of z		
	$2\cos 7\theta = 128\cos^7 \theta - 7\left(z^5 + \frac{1}{z^5}\right) - 21\left(z^3 + \frac{1}{z^3}\right) - 35\left(z + \frac{1}{z}\right)$	M1	
	Starts the process of replacing $\left(z + \frac{1}{z}\right)^n$ with $(2\cos\theta)^n$	1011	
	$= 128\cos^{7}\theta - 7(2\cos\theta)^{5} + 14\left(z^{3} + \frac{1}{z^{3}}\right) + 35\left(z + \frac{1}{z}\right)$		
	$=128\cos^{7}\theta-7(2\cos\theta)^{5}+14(2\cos\theta)^{3}-7\left(z+\frac{1}{z}\right)$		
	$=128\cos^{7}\theta-7(2\cos\theta)^{5}+14(2\cos\theta)^{3}-14\cos\theta$	M1	
	Reaches an expression in terms of cos only		
	$\cos 7\theta = 64\cos^7 \theta - 112\cos^5 \theta + 56\cos^3 \theta - 7\cos \theta$	A1	

(b)	$\cos 7\theta + 1 = 0 \Longrightarrow \cos 7\theta = -1$	$\cos 7\theta = -1 \ (\cos 7x = -1 \ \text{is B0})$	B1
	$7\theta = \pm 180, \pm 540, \pm 900, \pm 1260,$ or $7\theta = \pm \pi, \pm 3\pi, \pm 5\pi, \pm 7\pi,$	At least one correct value for 7θ . Condone the use of $7x$ here.	M1
	$\theta = \pm \frac{180}{7}, \pm \frac{540}{7}, \pm \frac{900}{7}, \pm \frac{1260}{7}, \dots \Longrightarrow \cos \theta = \dots$ or $\theta = \pm \frac{\pi}{7}, \pm \frac{3\pi}{7}, \pm \frac{5\pi}{7}, \pm \frac{7\pi}{7}, \dots \Longrightarrow \cos \theta = \dots$	Divides by 7 and attempts at least one value for $\cos \theta$. Condone the use of <i>x</i> for θ here.	M1
	$x = \cos \theta = 0.901, 0.223, -1, -0.623$	A1: Awrt 2 correct values for <i>x</i> A1: Awrt all 4 <i>x</i> values correct and no extras	A1A1
			(5)
			Total 11

Question Number	Scheme	Notes	Marks
8(a)	$2\sin\theta = 1.5 - \sin\theta \Longrightarrow \theta = \dots$ or $\sin\theta = \frac{r}{2} \Longrightarrow r = 1.5 - r \Longrightarrow r = \dots$	Equate and attempt to solve for θ or Eliminates sin θ and solves for <i>r</i>	M1
	$P\left(1,\frac{\pi}{6}\right)$	Correct coordinates. Allow the marks as soon as the correct values are seen and allow coordinates the wrong way round and allow awrt 0.524 for $\pi/6$	A1
	$Q\left(1,\frac{5\pi}{6}\right)$	Correct coordinates. Allow the marks as soon as the correct values are seen and allow coordinates the wrong way round and allow awrt 2.62 for $5\pi/6$	A1
			(3)

(b)
$$\frac{\left(\frac{1}{2}\right)\int \left(1.5 - \sin\theta\right)^2 d\theta \text{ or } \left(\frac{1}{2}\right)\int \left(2\sin\theta\right)^2 d\theta}{Attempts to use ...\int (\sin\theta)^2 d\theta \text{ or } ...\int (1.5 - \sin\theta)^2 d\theta}{(1.5 - \sin\theta)^2 = 2.25 - 3\sin\theta + \sin^2\theta = 2.25 - 3\sin\theta + \frac{(1 - \cos 2\theta)}{2}}{Expands (allow poor squaring e.g. $(1.5 - \sin\theta)^2 = 2.25 + \sin^2\theta$ and attempts to use $\sin^2\theta = \frac{1}{2} \pm \frac{\cos 2\theta}{2}$

$$\frac{1}{2}\int (1.5 - \sin\theta)^2 d\theta = \frac{1}{2}\left[\frac{11}{4}\theta + 3\cos\theta - \frac{1}{4}\sin 2\theta\right]$$
M1: Attempt to integrate and reaches an expression of the form $a\theta + \beta\cos\theta + \gamma\sin 2\theta$
At: Correct integration (with or without the ½)

$$\frac{1}{2}\left[\int_{4}^{\pi} \frac{1}{6} + \frac{1}{3}, \cos\frac{5\pi}{6} - \frac{1}{4}\sin 2, \frac{5\pi}{6}\right] - \left(\frac{11}{4}, \frac{\pi}{6} + 3\cos\frac{\pi}{6} - \frac{1}{4}\sin 2, \frac{\pi}{6}\right)\right]$$
This is a key step and must be the correct method for this part of the area e.g. uses their $\frac{\pi}{6}$ and their $\frac{5\pi}{6}$ (or twice limits of their $\frac{\pi}{6}$ and $\frac{\pi}{2}$)

$$\frac{1}{2}\int (2\sin\theta)^2 d\theta = \int (1 - \cos 2\theta) d\theta = \left[\theta - \frac{1}{2}\sin 2\theta\right]_{6}^{\pi} = \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)(-\theta)$$
Uses the limits 0 and their $\frac{\pi}{6}$ to find at least one segment.
If using integration, must have integrated to obtain $\rho\theta + q\sin 2\theta$ with correct use of limits.
NB can be done as: $\frac{1}{2}(1)^2 \left(\frac{\pi}{3}\right) - \frac{1}{2}(1)^2\sin\left(\frac{\pi}{3}\right)$ but must be correct work for their angles

$$\frac{1}{12} - \frac{11\sqrt{3}}{\frac{\pi}{6}} = (1.5 - \sin\theta)^2 d\theta \text{ or } 2x \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1.5 - \sin\theta)^2 d\theta$$

$$\frac{1}{2} \sqrt{\frac{\pi}{6}} = (1.5 - \sin\theta)^2 d\theta \text{ or } 2x \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} (1.5 - \sin\theta)^2 d\theta$$

$$\frac{1}{2} \sqrt{\frac{\pi}{6}} = (2\sin\theta)^2 d\theta \text{ or } \left(\frac{1}{2} \int_{0}^{\pi} (2\sin\theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{6}}^{\pi} (2\sin\theta)^2 d\theta\right)$$
A1: Correct answer (allow equivalent fractions)
(8)$$

Note	that attempts to use $\left(\frac{1}{2}\right)\int (C_1 - C_2)^2 d\theta$ e.g. $\left(\frac{1}{2}\right)\int (2\sin\theta - (1.5 - \sin\theta))^2 d\theta$ Will probably only score a maximum of the first 3 marks i.e. M1 for $\left(\frac{1}{2}\right)\int (2\sin\theta - (1.5 - \sin\theta))^2 d\theta$	M1
	M1 for expanding and attempting to use $\sin^2 \theta = \pm \frac{1}{2} \pm \frac{\cos 2\theta}{2}$ M1 for attempting to integrate and reaching an expression of the form $\alpha \theta + \beta \cos \theta + \gamma \sin 2\theta$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom